
Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Security of Multithreaded Programms by
Compilation

Paper written by Barthe, Rezk, Russo and Sabelfeld [1]

Pascal Wittmann

TU Darmstadt

Seminar “Formal Specification”
December 1–2, 2011

1 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Outline

Why formal methods?

Security problems of multithreaded programs.

Discussion of a solution.

Other/related solutions.

Conclusion / Outlook.

2 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Why formal methods?

Why formal methods?

Modeling precisely a part of the world

Formulate the problem unambiguous

Leaving unimportant things underspecified

Improve the understanding of the problem

Use abstraction to cover a large number of cases

3 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Security problems of multithreaded programs

Security problems of multithreaded programs

There are private (high) and public (low) variables

The attacker can observe low-level variables

Sequential:

explicit flows: lo := hi

implicit flows: if hi then lo := 1 else lo := 0

Concurrent:

internal timing leak:
if hi {sleep(100)}; lo := 1 || sleep(50); lo := 0

other example: hi := 0; lo = hi || hi := private-data

External timing leaks are not covered

Advantages of formal methods

Applicable on a wide rage of schedulers and bytecode
Verification without running the program

4 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Discussion of a solution

Syntax & Semantic of multithreaded programs

Program
State & Security environment
History & Scheduler

Type system & it’s soundness

The next function

Concrete instantiation

Tansfer rules
Defining the next function

5 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Syntax & Semantic of multithreaded programs

Program

We have a set of sequential Instructions SeqIns and a primitive
start pc that spawns a new thread.

Definition (Program P)

1 A set of program points P, with a distinguised entry point 1
and exit point exit

2 A map from P to Ins, where Ins = SeqIns ∪ {startpc} and
pc ∈ P \ {exit}. This map is refered to as P[i].

Further, a relation 7→⊆ P × P that describes possible successor
instructions and it’s reflexive and transitive closure 7→∗.

6 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Syntax & Semantic of multithreaded programs

State

We have a set of local states, LocState and a global memory
GMemory. In Addition we have a set of thread identifiers Thread.

Definition (State)

1 SeqState is a product LocState × GMemory

2 ConcState is a product (Thread ⇀ LocState) × GMemory

Accessors for a state s:

s.lst and s.gmem are projections on the first and second
component

s.act is the set of active threads

s.pc(tid) retrieves the current program point of the thread tid

7 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Syntax & Semantic of multithreaded programs

Security environment

We assume a set of levels Level = {low, high} where low < high
with an attacker on level low.

Definition (Security environment)

1 A function se : P → Level

2 A program point i ∈ P is:

low if se(i) = low , written L(i)
high if se(i) = high, written H(i)
always high if ∀j ∈ P.(i 7→∗ j)→ se(j) = high, written AH(i)

Now we classify threads in (where s is a ConcState):

s.lowT = {tid ∈ s.act | L(s.pc(tid))}
s.highT = {tid ∈ s.act | H(s.pc(tid))}
s.ahighT = {tid ∈ s.act | AH(s.pc(tid))}
s.hidT = {tid ∈ s.act | H(s.pc(tid)) ∧ ¬AH(s.pc(tid))}

8 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Syntax & Semantic of multithreaded programs

History & Scheduler

Definition (History)

A History History is a list of pairs (tid , l), where tid ∈ Thread

and l ∈ Level.

Definition (Scheduler)

A scheduler is a function pickt : ConcState × History ⇀ Thread
that statisfies these conditions:

1 Always picks active threads

2 if s.hidT 6= ∅ then pick(s, h) ∈ s.hightT

3 Only uses low names and the low part of the history to pick a
low thread

9 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Type system & it’s soundness

Type system

LType is a poset (reflexive, antisymmetric, transitiv) of local types.

Intuition of the type judgements: se, i ` s ⇒ t means if executing
program point i the type changes from s to t w.r.t a security
environment se.

Definition (Typable program)

A program is typable (written se,S ` P) if

1 for all initial program points holds S(i) = tinit and

2 ∀i , j ∈ P : (i 7→ j)→ ∃s ∈ LType . se, i ` S(i)⇒ s ∧S(j) ≤ s

where S : P → LType and a security environment se.

10 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Type system & it’s soundness

Soundness of the type system

Definition (Noninterfering program)

∼g is a indistinguishability relation on global memories. A program
is noninterfering iff for all global memories µ1, µ

′
1, µ2, µ

′
2 the

following holds

(µ1 ∼g µ2 ∧ P, µ1 ⇓ µ′1 ∧ P, µ2 ⇓ µ′2)→ µ′1 ∼g µ
′
2

Theorem

If the scheduler is secure and se,S ` P, then P is noninterfering

Due to this theorem it is possible to typecheck the bytecode
(which was compiled type-preserving) to proof the non-existence of
internal timing leaks.
The proof is not part of this presentation, but I’ll show the next

function on which the proof relies.
11 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

The next function

The next function

If the execution of program point i results in a high thread, the
function next : P ⇀ P calculates the program point in which the
thread becomes visible again.
The next function has to fulfill the following properties:

Dom(next) = {i ∈ P | H(i) ∧ ¬AH(i)} (1)

i , j ∈ Dom(next) ∧ i 7→ j ⇒ next(i) = next(j) (2)

i ∈ Dom(next) ∧ L(j) ∧ i 7→ j ⇒ next(i) = j (3)

j , k ∈ Dom(next) ∧ L(i) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k ⇒ next(j) = next(k) (4)

i , j ∈ Dom(next) ∧ L(k) ∧ i 7→ j ∧ i 7→ k ∧ j 6= k ⇒ next(j) = k (5)

12 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Instantiation

Source and target language

Simple langugage with if, ;, :=, while and fork

Assembly

push n — push value on the stack
load x — push value of variable on the stack
store x — store first element of the stack in x
goto j / ifeq j — un-/conditional jump to j
start j — create a new thread starting in j

13 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Instantiation

Transfer rules

LType = Stack(Level)

P[i] = store x se(i) t k ≤ Γ(x)

se, i `seq k :: st ⇒ st

P[i] = ifeq j ∀j ′ ∈ reg(i), k ≤ se(j ′)

se, i `seq k :: st ⇒ liftk(st)

where reg : P ⇀ P(P) computes the control dependence region.
liftk(st) is the point-wise extension of λk ′.k t k ′. Γ(x) expresses
the chosen security policy by assigning a security level to each
variable.
Similar rules have to be established for the other commands of the
target language.

14 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Instantiation

Concurrent extension

The transfer rules are extended by the following rules:

P[i] ∈ SeqIns se, i `seq s ⇒ t

se, i ` s ⇒ t

P[i] = start pc se(i) ≤ se(pc)

se, i ` s ⇒ s

We label the program points where control flow can branch or side
effects can ocour.

c ::= [x := e]n | c;c | [if e then c else c]n | [while e do c]n

| [fork(c)]n

With this labeling we can define control dependence regions for the
source langugage (sregion) and derive them for the target
language (tregion).

15 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Instantiation

sregion & tregion

Definition (sregion)

sregion(n) is defined as the set of labels that are inside a branching
command [c]n, except those inside fork.

Definition (tregion)

tregion(n) is defined for [c]n as the set of instructions/labels
obtained by compiling [c ′]n

′
where n′ ∈ sregion(n). If c is while

then n ∈ tregion(n).

Excerpt of the compilation function C:
C(c) = let (lc, T) = S(c, []);

in goto (#T + 2) :: T :: lc :: return

S(fork(c), T) = let (lc, T’) = S(c, T);

in (start (#T’ + 2), T’ :: lc :: return)

16 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Instantiation

junction points & next function

Definition (junction point)

For every branching point [c]n in the source program we define

jun(n) = max{i |i ∈ tregion(n)}+ 1

To identify the outermost branching points that involves secrets we
extend the type system. A source program is typeable (`◦ c : E
where E maps labels to security levels) and judgments of the form
`α [c]nα′ : E . One example typing rule (◦ public, • secret):

` e : H `• c : E E = liftH(E , sregion(n))

`◦ [while e do c]n• : E

Definition (next)

For alle branching program points c such that `◦ [n]n• next is
defined as ∀k ∈ tregion(n) . next(k) = jun(n). 17 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Other/related solutions

Protection/hiding based approaches

Volpano & Smith [4][5][3] use a protect(c) primitive
Russo & Sabelfeld [2] use hide and unhide primitives

Low-determinism approaches

Zdancewic and Myres [6] disallow races on public data

External-timing based approaches

here the attacker is more powerful: he can measure execution
time
this causes much more restrictiveness (e.g. loops with secret
guards are disallowed)

18 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Other/related solutions

Comparison with Zdancewi and Myres[6]

Introduces a relative complex language λPARSEC

Also uses a type system to enforce security

Uses the same notion of noninterference

Observational determinism is defined as the
indistinguishability of memory access traces

(m ≈ζ m
′ ∧m ⇓ T ∧m′ ⇓ T ′)⇒ T ≈ζ T

′

Thus it rejects Programs like lo := 1 || lo := 0

In contrast to the paper discussed here, λPARSEC provides support
for synchronization using join patterns

19 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Outlook

Adaption to the JVM

JVML’s sequential type system is compatible with bytecode
verifikation, thus it’s compatible with the concurrent type
system.

The scheduler is mostly left unspecified, thus introducing a
secure scheduler is possible.

Issues

Method calls have a big-step semantic
This approach does not deal with synchronization

20 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Conclusion

Conclusion

Proof of noninterference for a concurrent low-level language

Proof of type-preserving compilation in context of concurrency

Scheduler is driven by the security environment

Independent of the scheduling algorithm

No useful secure programs are rejected

No need to trust the compiler, checking can be done at target
level (without running the program)

Programmer does not need to know about internal timing
leaks

No restrictions on dynamic thread creation

What needs to be done? Extension for real world languages
e.g. adding support for synchronization

21 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Bibliography I

[1] Gilles Barthe, Tamara Rezk, Alejandro Russo, and Andrei
Sabelfeld.
Security of multithreaded programs by compilation.
In In Proc. 12th European Symposium on Research in
Computer Security, pages 2–18. Springer-Verlag, 2007.

[2] Alejandro Russo and Andrei Sabelfeld.
Securing interaction between threads and the scheduler.
In IEEE Computer Security Foundations Symposium, pages
177–189, 2006.

[3] G. Smith and D. Volpano.
A sound type system for secure flow analysis.
In J. Computer Security 4, pages 167–187, 1996.

22 / 22

Introduction Discussion of a solution Other/related solutions Conclusion / Outlook Bibliography

Bibliography II

[4] G. Smith and D. Volpano.
Secure information flow in a multi-threaded imperative
language.
In ACM Symp. on Principles of Programming Languages,
pages 355–364, 1998.

[5] G. Smith and D. Volpano.
Probalistic noninterference in a concurrent language.
In J. Computer Security 7, pages 231–253, 1999.

[6] Steve Zdancewic and Andrew C. Myers.
Observational determinism for concurrent program security.
In In Proc. 16th IEEE Computer Security Foundations
Workshop, pages 29–43, 2003.

23 / 22

	Introduction
	Why formal methods?
	Security problems of multithreaded programs

	Discussion of a solution
	Syntax & Semantic of multithreaded programs
	Syntax & Semantic of multithreaded programs
	Syntax & Semantic of multithreaded programs
	Syntax & Semantic of multithreaded programs
	Type system & it's soundness
	Type system & it's soundness
	The next function
	Instantiation
	Instantiation
	Instantiation
	Instantiation
	Instantiation

	Other/related solutions
	Other/related solutions

	Conclusion / Outlook
	Outlook
	Conclusion

	Bibliography

